
Super-scalar Architecture: Evolution,
Challenges and Considerations

1 Introduction
The emergence and evolution of super-scalar architecture has largely influenced the development of
the computer field. In this report, we will explore it in three aspects. Firstly, we shall delve into the
hardware part, tracing the evolution from single-core to multi-core processors and examining
different types of multi-core processors and their developments over the years. Secondly, we will
navigate through the operating system, getting to know about the main OSs capable of utilizing the
power of multi-core processors, their evolution, and a comprehensive discussion of the features
implemented by one OS: Linux. Finally, we will clarify the influence of two critical principles in parallel
computing: Amdahl's Law and Gustafson's Law. These laws provide invaluable insights into the
potential and limitations of parallel processing, shaping our understanding of super-scalar
architecture's future.

2 The Rise of Multi-core Processors and PCs

2.1 Introduction to Multi-Core Processors and Their History

Multi-core processors are integrated circuits that contain two or more processing units, or cores. Each
core can only operate one single instruction at the same time, however, due to the presence of
multiple cores, the processor is able to execute several instructions simultaneously, thus increasing
the overall speed on a macro level, resulting in faster and more efficient computing.

The concept of 'multi-core' was introduced in the 1980s as the improvement of clock speed of 'single-
core' processors slowed. Multi-core processors gradually entered the commercial field in the early
21st century. The POWER4 Chip launched by IBM in 2001 was the first commercial multi-core
processor (Chen et al., 2009).

2.2 Types of Multi-Core Processors

2.2.1 Symmetric Multi-Processing (SMP)

In a SMP-type processor, there is typically one main memory which is shared by all processing units.
Each core has equal access to reading from or writing to any memory location, as well as other
resources like I/O devices, via system bus. Most multi-core processors in use today use SMP
architecture. Fig. 1 shows the relationship between the different cores in SMP architecture.

af://n0
af://n2
af://n4
af://n5
af://n8
af://n9

Fig. 1 Diagram of SMP Architecture

Fig. 2 Diagram of NUMA Architecture

Advantages of SMP Architecture

(1) Affordability

Since there is only one shared main memory and one system bus for all the cores in SMP architecture,
SMP-type processors are generally less expensive.

(2) Reliability

Since each core is relatively parallel in SMP architecture, even if there is a problem with one, the whole
system is still able to operate at a reduced speed.

2.2.2 Non-Uniform Memory Access (NUMA)

The emergence of NUMA structure is later than that of SMP architecture, because it is a result of
optimisation based on SMP architecture. In NUMA srchitecture, unlike SMP architecture, each core
typically has its own local memory, or "near" memory, which the core can access with lower latency
than other memory nodes, or "far" memory. Multiple cores may share one memory node. This
compensates for the fact that memory operates significantly slower than processing units, which
means that NUMA-type processors are able to provide better speed and performance than SMP-type
processors in scenarios where multiple processing units need to access memory at the same time.
NUMA architecture is prevalent in many high-performance computing environments nowadays, for
instance, servers and workstations. Fig. 2 shows the relationship between the different cores in NUMA
architecture.

af://n13
af://n14
af://n16
af://n18

Advantages of NUMA Architecture

(1) Performance

Since every core in NUMA architecture has its own local memory, the memory access times of cores
are significantly reduced. This also means that the possible memory contention caused when multiple
cores are accessing the memory simultaneously are avoided to the greatest extent, which improves
the overall system performance.

(2) Scalability

NUMA architecture is built for heavy workloads. When more powerful performance is needed,
additional cores and their memory nodes can be added to the processor. This proves that NUMA
architecture has a strong scalability.

2.3 The Development of Multi-core Processors and Modern PCs

After multi-core processors entered the commercial field in the early 21th century, multi-core
processors became widely used in consumer PCs. By the mid-2000s, dual-core processors became the
mainstream in the PC market.

Around 2010, more advanced quad-core processors began to be adopted in consumer PCs. The
advantages of multi-core processors are further reflected, because they will not significantly increase
computing energy consumption while further improving the performance of computers.

The 2010s witnessed an explosion in the number of cores in commercial multi-core processors. Hexa-
core, octa-core, and even higher-core processors emerged one after another. PCs were beginning to
have the ability to perform tasks that were more complex and required more computing power than
the past, for instance, running a large-scale video game. Ordinary people began to gain more
powerful capabilities with the help of PCs.

Today, the design of multi-core processors begins to focus more on the optimisation for different
cores, rather than simply accumulating the number of cores. Cores on every multi-core processors
nowadays are becoming more specialized. Take Intel i9-13900H, one of the most powerful multi-core
processors in PCs at present, as an example. Fig. 3 below (Amazon, 2023) outlines some of the
parameters of the chip. As shown, Intel i9-13900H has 14 cores, of which 6 are performance cores,
which are optimized for high-performance tasks, and the other 8 are energy-efficiency cores, which
are specifically designed for efficiency. This kind of differential design allows PCs to be capable of a
wide range of workloads.

af://n22
af://n23
af://n25
af://n27

Fig. 3 Parameter Introduction of Intel i9-13900H (Amazon, 2023)

Since the appearance of multi-core processors, the adoption of them in PCs has significantly
enhanced of capiability of modern PCs. The transformation of modern PCs has also led to the
development of more sophisticated operating systems designed to make the most use of the parallel
processing capabilities of multi-core processors. This will be covered in the next chapter.

3 Operating Systems

3.1 The Importance of Operating System Support for Multi-core
Processors

(1) Resource Utilization

The operating system plays a important role in managing resources for different cores in a multi-core
processor. Without the effective support of an operating system, the resources of a multi-core
processor may not be properly utilized. The operating system is responsible for task scheduling,
ensuring that each core is effectively utilized and that no core is idle while others are overloaded. This
balance is critical in achieving high performance. Additionally, the operating system manages the
memory hierarchy, ensuring that each core has the same access to memory resources, which is
important for efficient execution of tasks.

af://n35
af://n36
af://n37

(2) Scalability

As the number of cores in a processor increases, the complexity of managing these cores and their
interactions also increases. The operating system must be capable of scaling its management
capabilities to accommodate the increased number of cores. Without a scalable operating system, the
benefits of adding more cores could be limited by the increased overhead of managing them, thereby
limiting the potential performance improvements.

(3) Parallelism and Concurrency

Parallelism and concurrency are inherent advantages of multi-core processors, allowing multiple tasks
to be executed simultaneously. However, this requires sophisticated support from operating system.
It is responsible for managing concurrent tasks, ensuring that they are executed without conflicts and
that the results are correctly synchronized. Furthermore, the operating system must also manage
parallelism, dividing tasks into smaller subtasks that can be executed in parallel across multiple cores.
This requires complex algorithms for task division and scheduling, as well as for managing
communication and synchronization between cores.

3.2 The History and Development of Multi-core Utilization in
Main OSs

Today, the most common mainstream operating systems in our lives, including Linux, Windows and
macOS, are all well supported with multi-core processors.

(1) Linux

Linux began its support for SMP architecture in its version 2.0 in 1996. It introduced LinuxThreads as a
partial implementation for POSIX threads, which is a thread standard for Portable Operating System
Standard, or POSIX. With the introduction of POSIX threads, Linux was able to support user-level
threading, enabling parallel task execution.

Later, more complete and efficient support for multi-core processing was further refined with
subsequent releases. For instance, Linux version 2.6 provides better task scheduling and load
balancing by introducing a new scheduling algorithm that is capable of scheduling different tasks in
constant time.

(2) Windows

Windows OS began its support for SMP architecture in Windows NT 4.0 in 1996, but it was primarily
designed for servers and workstations. Windows XP released in 2000 is the first Windows system to
actually and directly support multi-core. It was optimized to take advantage of multi-core processors.

In 2010, Microsoft introduced .NET Framework 4.0, which brought an important new feature called
Parallel Language Integrated Query, or PLINQ. PLINQ allows developers to write parallel queries in
Language Integrated Query (LINQ). It also enabled automatic parallelization of certain LINQ queries.
PLINQ is able to distribute the workload across multiple cores automatically, without requiring explicit
threading code from the developer. This enables Windows to take full advantage of the parallel
processing power of the multi-core architecture.

af://n39
af://n41
af://n43
af://n45
af://n48

(3) macOS

The first version of macOS to officially support SMP was Mac OS X Server 1.0, released in 1999. Mac
OS X Server 1.0 was based on the Mach kernel and BSD Unix, which provided a solid foundation for
supporting SMP configurations. It offered true symmetric multiprocessing capabilities, allowing
multiple cores to execute tasks concurrently.

In 2009, Apple released MacOS Snow Leopard. It introduced a feature called Grand Central Dispatch,
or GCD. GCD is able to optimize application performance on multi-core processors and symmetric
multiprocessing systems by giving more authority over threads to the operating system. With the help
of GCD, developers can easily take advantage of multi-core processors without having to focus heavily
on architecture of the operating system's thread pool.

3.3 A Detailed Description on How Linux Utilizes Multi-core
Processors

Linux, as an open source OS, has a wealth of experience and flexible design in supporting multi-core
processors, which is mainly based on its SMP architecture, which allows multiple cores to share the
same memory space and the exact same I/O bus. In addition to this, there are also a number of
features in Linux that further strengthens Linux's ability to utilize multiple cores:

3.3.1 Scheduling Algorithms: CFS (Completely Fair Scheduler)

CFS is the foundation of Linux's general task scheduling, focusing on time-sharing for non-real-time
processes to ensure fair CPU allocation. It employs a virtual clock system, in which the advancement
of each processor's clock slows with increased task weight. Moreover, each task's virtual clock is
inversely proportional to its weight, effectively measuring CPU time (Liu et al., 2010). CFS replaces the
classic priority queue with a red-black tree for each CPU's run queue, optimizing multi-core
scheduling, as shown in Fig. 4. High-priority tasks, though slower in virtual time, are scheduled often,
promoting resource equity and preventing them from hogging the CPU at the expense of lower-
priority tasks, thus improving system performance and responsiveness.

af://n51
af://n54
af://n56

Fig. 4 The Red-Black Tree for Tasks in CFS

In addition to CFS, Linux offers several other scheduling policies, including:

SCHED_FIFO: A FIFO real-time scheduling policy suitable for tasks that require strict timing
guarantees.

SCHED_RR: A Round-Robin realtime scheduling policy that allocates a fixed time slice to each
task, ideal for tasks that require a higher priority but do not need to monopolize the CPU (Ishkov,
2015).

SCHED_OTHER: A non-realtime time-sharing scheduling policy designed for regular user-level
processes.

SCHED_IDLE: A low-priority scheduling policy that runs only when no other higher priority tasks
require the CPU.

3.3.2 Time Slicing

Linux employs CFS for time slicing, allocating CPU time to processes in a round-robin fashion. This
ensures fair execution opportunities for all processes, enhancing system responsiveness and
interactivity in a multitasking setting.

af://n70

3.3.3 Thread-level Parallelism

As mentioned above, Linux provides a POSIX-standard kernel level multithreading library called
LinuxThreads, which enables user programs to efficiently create, manage, and synchronize threads.
These threads benefit from shared memory, which facilitates efficient communication and enhances
application performance. Moreover, Linux supports CPU affinity, allowing for the optimization of
thread execution on designated cores, reducing cache misses and inter-core communication costs,
and effectively make use of the power of multi-core processors to improve overall system efficiency.

4 Challenges and Considerations in Multi-Core
Processor Scalability

4.1 Limitations of Cores

Multi-core processors, with their ability to run multiple tasks simultaneously, have changed the field of
computing. Each core in these processors perform as an individual, thus adding power for calculating.
However, their rise has led issues like cache consistency, memory access patterns and inter-core
communication.

Cache consistency is about making sure that changes to shared data are correctly updated for anyone
who needs that. When a cache copy undergoes a memory writing operation, the cache controller
invalidates the copy of data, suggesting a new value has to be fetched from the main memory in the
next memory access (Park et al., 1998).

Memory access latency is another issue. Even though processors are equipped with multiple
instruction execution units, memory access causes cache misses, which slows down the program
considerably. Fig. 5 indicated that the physical distances increases as system goes large.

The inter core communication also plays a crucial role in CPUs. The compiler should balance float and
integer instructions, allowing the scheduling unit keeping all types of units busy. Better algorithm for
compiler to optimally schedule instructions can lead to higher performance of CPU.

More cores do not always bring better performance. Overcoming these challenges is essential for true
scalability when we increase the number of cores in a single processor.

af://n72
af://n74
af://n75

Fig. 5 Physical Delay of Large Systems

4.2 Limitations of Algorithms

Parallel programming and thread-level parallelism are of great importance to harnessing the
capabilities of super-scalar architecture. Parallel programming allows concurrent computations,
improving efficiency and speed.

On the other hand, thread-level parallelism involves different threads executing a single process
simultaneously. This is possible benefit from the multiple execution units in a super-scalar processor,
which can process separate threads concurrently, enhancing throughput and performance.

However, developing software that can effectively use these features is complex. Developers must
consider synchronization, which coordinates the execution of multiple instructions. Poorly managed
synchronization can create performance bottlenecks.

Load balancing, which involves distributing instructions evenly among functional units, is a vital
aspect. It is essential to employ dynamic instruction dispatching algorithms to ensure a balanced
computational load on units. Uneven distribution can result in either under-utilization or over-
utilization of resources, finally impacting system performance. Fig. 6 gives a brief sketch of how tasks
were distributed to cores.

Additionally, effective management of competition for shared resources such as registers and caches
is crucial, too. In super-scalar architecture, multiple execution units compete for these shared
resources, potentially causing bottlenecks of calculating strength.

Although parallel programming and thread-level parallelism offer significant advantages, they also
come with distinct challenges. Successfully addressing these challenges necessitates meticulous
handling of synchronization, load balancing, and resource contention.

af://n79

Fig. 6 Tasks Distributed to Cores Sketch

4.3 Trade-offs on Designing

In the context of super-scalar architecture, there are several trade-offs to consider. One of the key
principles is Amdahl's law, which states that even if parallelized, some parts of the application are still
continuous. Amdahl's law assumes that the speed-up ratio of parallelization is limited by the part of
the program that cannot be parallelized (Wu et al., 2011). This means that no matter how many cores
are added to the processor, some programs cannot take advantage of this parallelism, which limits
the overall acceleration that can be achieved.

On the other hand, Gustafson's Law highlights that as the size of a problem grows, the significance of
the parallel aspect also increases to enhance scalability. According to this principle, with the
availability of more computing resources, they are typically allocated to tackle larger problems. In this
scenario, the time spent on the parallelizable segment is often considerably faster than the inherent
serial tasks.

This means that designing better method and algorithm to realize functions and turn sequential
computing into parallel computing will also help improve scalability. Interestingly, slower algorithms
that can run in parallel sometimes work better on faster sequential algorithms on multi-core
processors.

Finding the right balance is not easy. It's important to handle parallel tasks, synchronization, and
communication overhead carefully. In super-scalar processors, problems like delays become more
obvious and can affect performance. This can lead to scheduling issues. So, when creating super-
scalar architecture, it's crucial to think about these factors carefully.

5 Conclusion
The evolution of multi-core processors and multi-processor PCs has revolutionized the hardware
landscape, while advancements in operating systems have adapted to harness this increased
processing power, illustrating the symbiotic relationship between hardware and software in the
journey towards more efficient computing.

The future of computing may be dominated by multi-core processors, with more and more emphasis
on hardware and software level parallelism. There are undoubtedly still many challenges in this field,
but we can still look forward to the future development of super-scalar architectures.

af://n83
af://n85
af://n88

6 References
Amazon (2023) GEEKOM Mini PC Mini IT13, 13th Gen Intel i9-13900H NUC13 Mini Computers(14 Cores,20
Threads) 32GB DDR4 & 2TB PCIe Gen 4 SSD Windows 11 Pro Desktop PC Support Wi-Fi 6E/Bluetooth 5.2/USB
4.0/2.5G LAN/8K. Available at: https://www.amazon.com/GEEKOM-Mini-IT13-i9-13900H-Computers/dp/
B0CJTGHNV2 (Accessed: 13 April 2024).

Chen, G.L., Sun, G.Z., Xu, Y. and Long, B. (2009) 'Integrated research of parallel computing: Status and
future', Science Bulletin, 54(11), pp. 1845-1853. Available at: https://link.springer.com/article/10.1007/s
11434-009-0261-9. (Accessed: 14 April 2024).

Ishkov, N. (2015) 'A complete guide to Linux process scheduling (Master's thesis)', M.Sc. Thesis.
Available at: https://trepo.tuni.fi/bitstream/handle/10024/96864/GRADU-1428493916.pdf?sequence=1
&isAllowed=y (Accessed: 15 April 2024).

Liu, T., Wang, H.J., Wang, G.H. (2010) 'Research of CFS Scheduling Algorithm Based on Linux Kernel',
Computer & Telecommunication, 4(3), pp. 61-63. Available at: https://qikan.cqvip.com/Qikan/Article/Det
ail?id=33544743&from=Qikan_Search_Index (Accessed: 16 April 2024).

Park, G.H., Kwon, O.Y., Han T.D., Kim, S.D. and Yang S.B. (1998) 'Methods to improve performance of
instruction prefetching through balanced improvement of two primary performance factors', Journal
of Systems Architecture, 1998(9), pp. 755-772. (Accessed: 17 April 2024).

Wu, X.L., Beissinger, T.M., Bauck S., Woodward, B., Rosa G.J.M., Weigel, K.A., Gatti, N.L. and Gianola, D.
(2011) 'A Primer on High-Throughput Computing for Genomic Selection', Frontiers in Genetics.
(Accessed: 16 April 2024).

af://n88
https://www.amazon.com/GEEKOM-Mini-IT13-i9-13900H-Computers/dp/B0CJTGHNV2
https://link.springer.com/article/10.1007/s11434-009-0261-9
https://trepo.tuni.fi/bitstream/handle/10024/96864/GRADU-1428493916.pdf?sequence=1&isAllowed=y
https://qikan.cqvip.com/Qikan/Article/Detail?id=33544743&from=Qikan_Search_Index

	Super-scalar Architecture: Evolution, Challenges and Considerations
	1 Introduction
	2 The Rise of Multi-core Processors and PCs
	2.1 Introduction to Multi-Core Processors and Their History
	2.2 Types of Multi-Core Processors
	2.2.1 Symmetric Multi-Processing (SMP)
	Advantages of SMP Architecture
	(1) Affordability
	(2) Reliability

	2.2.2 Non-Uniform Memory Access (NUMA)
	Advantages of NUMA Architecture
	(1) Performance
	(2) Scalability

	2.3 The Development of Multi-core Processors and Modern PCs

	3 Operating Systems
	3.1 The Importance of Operating System Support for Multi-core Processors
	(1) Resource Utilization
	(2) Scalability
	(3) Parallelism and Concurrency

	3.2 The History and Development of Multi-core Utilization in Main OSs
	(1) Linux
	(2) Windows
	(3) macOS

	3.3 A Detailed Description on How Linux Utilizes Multi-core Processors
	3.3.1 Scheduling Algorithms: CFS (Completely Fair Scheduler)
	3.3.2 Time Slicing
	3.3.3 Thread-level Parallelism

	4 Challenges and Considerations in Multi-Core Processor Scalability
	4.1 Limitations of Cores
	4.2 Limitations of Algorithms
	4.3 Trade-offs on Designing

	5 Conclusion
	6 References

