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1 Introduction  
The emergence and evolution of super-scalar architecture has largely influenced the development of 
the computer field. In this report, we will explore it in three aspects. Firstly, we shall delve into the 
hardware part, tracing the evolution from single-core to multi-core processors and examining 
different types of multi-core processors and their developments over the years. Secondly, we will 
navigate through the operating system, getting to know about the main OSs capable of utilizing the 
power of multi-core processors, their evolution, and a comprehensive discussion of the features 
implemented by one OS: Linux. Finally, we will clarify the influence of two critical principles in parallel 
computing: Amdahl's Law and Gustafson's Law. These laws provide invaluable insights into the 
potential and limitations of parallel processing, shaping our understanding of super-scalar 
architecture's future.

 

2 The Rise of Multi-core Processors and PCs  

2.1 Introduction to Multi-Core Processors and Their History  

Multi-core processors are integrated circuits that contain two or more processing units, or cores. Each 
core can only operate one single instruction at the same time, however, due to the presence of 
multiple cores, the processor is able to execute several instructions simultaneously, thus increasing 
the overall speed on a macro level, resulting in faster and more efficient computing.

The concept of 'multi-core' was introduced in the 1980s as the improvement of clock speed of 'single-
core' processors slowed. Multi-core processors gradually entered the commercial field in the early 
21st century. The POWER4 Chip launched by IBM in 2001 was the first commercial multi-core 
processor (Chen et al., 2009).

2.2 Types of Multi-Core Processors  

2.2.1 Symmetric Multi-Processing (SMP)  

In a SMP-type processor, there is typically one main memory which is shared by all processing units. 
Each core has equal access to reading from or writing to any memory location, as well as other 
resources like I/O devices, via system bus. Most multi-core processors in use today use SMP 
architecture. Fig. 1 shows the relationship between the different cores in SMP architecture.
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Fig. 1 Diagram of SMP Architecture

Fig. 2 Diagram of NUMA Architecture

Advantages of SMP Architecture  

(1) Affordability  

Since there is only one shared main memory and one system bus for all the cores in SMP architecture, 
SMP-type processors are generally less expensive.

(2) Reliability  

Since each core is relatively parallel in SMP architecture, even if there is a problem with one, the whole 
system is still able to operate at a reduced speed.

2.2.2 Non-Uniform Memory Access (NUMA)  

The emergence of NUMA structure is later than that of SMP architecture, because it is a result of 
optimisation based on SMP architecture. In NUMA srchitecture, unlike SMP architecture, each core 
typically has its own local memory, or "near" memory, which the core can access with lower latency 
than other memory nodes, or "far" memory. Multiple cores may share one memory node. This 
compensates for the fact that memory operates significantly slower than processing units, which 
means that NUMA-type processors are able to provide better speed and performance than SMP-type 
processors in scenarios where multiple processing units need to access memory at the same time. 
NUMA architecture is prevalent in many high-performance computing environments nowadays, for 
instance, servers and workstations. Fig. 2 shows the relationship between the different cores in NUMA 
architecture.
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Advantages of NUMA Architecture  

(1) Performance  

Since every core in NUMA architecture has its own local memory, the memory access times of cores 
are significantly reduced. This also means that the possible memory contention caused when multiple 
cores are accessing the memory simultaneously are avoided to the greatest extent, which improves 
the overall system performance.

(2) Scalability  

NUMA architecture is built for heavy workloads. When more powerful performance is needed, 
additional cores and their memory nodes can be added to the processor. This proves that NUMA 
architecture has a strong scalability.

2.3 The Development of Multi-core Processors and Modern PCs  

After multi-core processors entered the commercial field in the early 21th century, multi-core 
processors became widely used in consumer PCs. By the mid-2000s, dual-core processors became the 
mainstream in the PC market.

Around 2010, more advanced quad-core processors began to be adopted in consumer PCs. The 
advantages of multi-core processors are further reflected, because they will not significantly increase 
computing energy consumption while further improving the performance of computers.

The 2010s witnessed an explosion in the number of cores in commercial multi-core processors. Hexa-
core, octa-core, and even higher-core processors emerged one after another. PCs were beginning to 
have the ability to perform tasks that were more complex and required more computing power than 
the past, for instance, running a large-scale video game. Ordinary people began to gain more 
powerful capabilities with the help of PCs.

Today, the design of multi-core processors begins to focus more on the optimisation for different 
cores, rather than simply accumulating the number of cores. Cores on every multi-core processors 
nowadays are becoming more specialized. Take Intel i9-13900H, one of the most powerful multi-core 
processors in PCs at present, as an example. Fig. 3 below (Amazon, 2023) outlines some of the 
parameters of the chip. As shown, Intel i9-13900H has 14 cores, of which 6 are performance cores, 
which are optimized for high-performance tasks, and the other 8 are energy-efficiency cores, which 
are specifically designed for efficiency. This kind of differential design allows PCs to be capable of a 
wide range of workloads.
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Fig. 3 Parameter Introduction of Intel i9-13900H (Amazon, 2023)

Since the appearance of multi-core processors, the adoption of them in PCs has significantly 
enhanced of capiability of modern PCs. The transformation of modern PCs has also led to the 
development of more sophisticated operating systems designed to make the most use of the parallel 
processing capabilities of multi-core processors. This will be covered in the next chapter.

 

3 Operating Systems  

3.1 The Importance of Operating System Support for Multi-core 
Processors

 

(1) Resource Utilization  

The operating system plays a important role in managing resources for different cores in a multi-core 
processor. Without the effective support of an operating system, the resources of a multi-core 
processor may not be properly utilized. The operating system is responsible for task scheduling, 
ensuring that each core is effectively utilized and that no core is idle while others are overloaded. This 
balance is critical in achieving high performance. Additionally, the operating system manages the 
memory hierarchy, ensuring that each core has the same access to memory resources, which is 
important for efficient execution of tasks.
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(2) Scalability  

As the number of cores in a processor increases, the complexity of managing these cores and their 
interactions also increases. The operating system must be capable of scaling its management 
capabilities to accommodate the increased number of cores. Without a scalable operating system, the 
benefits of adding more cores could be limited by the increased overhead of managing them, thereby 
limiting the potential performance improvements.

(3) Parallelism and Concurrency  

Parallelism and concurrency are inherent advantages of multi-core processors, allowing multiple tasks 
to be executed simultaneously. However, this requires sophisticated support from operating system. 
It is responsible for managing concurrent tasks, ensuring that they are executed without conflicts and 
that the results are correctly synchronized. Furthermore, the operating system must also manage 
parallelism, dividing tasks into smaller subtasks that can be executed in parallel across multiple cores. 
This requires complex algorithms for task division and scheduling, as well as for managing 
communication and synchronization between cores.

3.2 The History and Development of Multi-core Utilization in 
Main OSs

 

Today, the most common mainstream operating systems in our lives, including Linux, Windows and 
macOS, are all well supported with multi-core processors.

(1) Linux  

Linux began its support for SMP architecture in its version 2.0 in 1996. It introduced LinuxThreads as a 
partial implementation for POSIX threads, which is a thread standard for Portable Operating System 
Standard, or POSIX. With the introduction of POSIX threads, Linux was able to support user-level 
threading, enabling parallel task execution. 

Later, more complete and efficient support for multi-core processing was further refined with 
subsequent releases. For instance, Linux version 2.6 provides better task scheduling and load 
balancing by introducing a new scheduling algorithm that is capable of scheduling different tasks in 
constant time.

(2) Windows  

Windows OS began its support for SMP architecture in Windows NT 4.0 in 1996, but it was primarily 
designed for servers and workstations. Windows XP released in 2000 is the first Windows system to 
actually and directly support multi-core. It was optimized to take advantage of multi-core processors. 

In 2010, Microsoft introduced .NET Framework 4.0, which brought an important new feature called 
Parallel Language Integrated Query, or PLINQ. PLINQ allows developers to write parallel queries in 
Language Integrated Query (LINQ). It also enabled automatic parallelization of certain LINQ queries. 
PLINQ is able to distribute the workload across multiple cores automatically, without requiring explicit 
threading code from the developer. This enables Windows to take full advantage of the parallel 
processing power of the multi-core architecture. 
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(3) macOS  

The first version of macOS to officially support SMP was Mac OS X Server 1.0, released in 1999. Mac 
OS X Server 1.0 was based on the Mach kernel and BSD Unix, which provided a solid foundation for 
supporting SMP configurations. It offered true symmetric multiprocessing capabilities, allowing 
multiple cores to execute tasks concurrently.

In 2009, Apple released MacOS Snow Leopard. It introduced a feature called Grand Central Dispatch, 
or GCD. GCD is able to optimize application performance on multi-core processors and symmetric 
multiprocessing systems by giving more authority over threads to the operating system. With the help 
of GCD, developers can easily take advantage of multi-core processors without having to focus heavily 
on architecture of the operating system's thread pool.

3.3 A Detailed Description on How Linux Utilizes Multi-core 
Processors

 

Linux, as an open source OS, has a wealth of experience and flexible design in supporting multi-core 
processors, which is mainly based on its SMP architecture, which allows multiple cores to share the 
same memory space and the exact same I/O bus. In addition to this, there are also a number of 
features in Linux that further strengthens Linux's ability to utilize multiple cores:

3.3.1 Scheduling Algorithms: CFS (Completely Fair Scheduler)  

CFS is the foundation of Linux's general task scheduling, focusing on time-sharing for non-real-time 
processes to ensure fair CPU allocation. It employs a virtual clock system, in which the advancement 
of each processor's clock slows with increased task weight. Moreover, each task's virtual clock is 
inversely proportional to its weight, effectively measuring CPU time (Liu et al., 2010). CFS replaces the 
classic priority queue with a red-black tree for each CPU's run queue, optimizing multi-core 
scheduling, as shown in Fig. 4. High-priority tasks, though slower in virtual time, are scheduled often, 
promoting resource equity and preventing them from hogging the CPU at the expense of lower-
priority tasks, thus improving system performance and responsiveness.
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Fig. 4 The Red-Black Tree for Tasks in CFS

In addition to CFS, Linux offers several other scheduling policies, including:

SCHED_FIFO: A FIFO real-time scheduling policy suitable for tasks that require strict timing 
guarantees.

SCHED_RR: A Round-Robin realtime scheduling policy that allocates a fixed time slice to each 
task, ideal for tasks that require a higher priority but do not need to monopolize the CPU (Ishkov, 
2015).

SCHED_OTHER: A non-realtime time-sharing scheduling policy designed for regular user-level 
processes.

SCHED_IDLE: A low-priority scheduling policy that runs only when no other higher priority tasks 
require the CPU.

3.3.2 Time Slicing  

Linux employs CFS for time slicing, allocating CPU time to processes in a round-robin fashion. This 
ensures fair execution opportunities for all processes, enhancing system responsiveness and 
interactivity in a multitasking setting.
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3.3.3 Thread-level Parallelism  

As mentioned above, Linux provides a POSIX-standard kernel level multithreading library called 
LinuxThreads, which enables user programs to efficiently create, manage, and synchronize threads. 
These threads benefit from shared memory, which facilitates efficient communication and enhances 
application performance. Moreover, Linux supports CPU affinity, allowing for the optimization of 
thread execution on designated cores, reducing cache misses and inter-core communication costs, 
and effectively make use of the power of multi-core processors to improve overall system efficiency.

 

4 Challenges and Considerations in Multi-Core 
Processor Scalability

 

4.1 Limitations of Cores  

Multi-core processors, with their ability to run multiple tasks simultaneously, have changed the field of 
computing. Each core in these processors perform as an individual, thus adding power for calculating. 
However, their rise has led issues like cache consistency, memory access patterns and inter-core 
communication.

Cache consistency is about making sure that changes to shared data are correctly updated for anyone 
who needs that. When a cache copy undergoes a memory writing operation, the cache controller 
invalidates the copy of data, suggesting a new value has to be fetched from the main memory in the 
next memory access (Park et al., 1998).

Memory access latency is another issue. Even though processors are equipped with multiple 
instruction execution units, memory access causes cache misses, which slows down the program 
considerably.  Fig. 5 indicated that the physical distances increases as system goes large.

The inter core communication also plays a crucial role in CPUs. The compiler should balance float and 
integer instructions, allowing the scheduling unit keeping all types of units busy. Better algorithm for 
compiler to optimally schedule instructions can lead to higher performance of CPU.

More cores do not always bring better performance. Overcoming these challenges is essential for true 
scalability when we increase the number of cores in a single processor.
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Fig. 5 Physical Delay of Large Systems

4.2 Limitations of Algorithms  

Parallel programming and thread-level parallelism are of great importance to harnessing the 
capabilities of super-scalar architecture. Parallel programming allows concurrent computations, 
improving efficiency and speed.

On the other hand, thread-level parallelism involves different threads executing a single process 
simultaneously. This is possible benefit from the multiple execution units in a super-scalar processor, 
which can process separate threads concurrently, enhancing throughput and performance.

However, developing software that can effectively use these features is complex. Developers must 
consider synchronization, which coordinates the execution of multiple instructions. Poorly managed 
synchronization can create performance bottlenecks.

Load balancing, which involves distributing instructions evenly among functional units, is a vital 
aspect. It is essential to employ dynamic instruction dispatching algorithms to ensure a balanced 
computational load on units. Uneven distribution can result in either under-utilization or over-
utilization of resources, finally impacting system performance. Fig. 6 gives a brief sketch of how tasks 
were distributed to cores. 

Additionally, effective management of competition for shared resources such as registers and caches 
is crucial, too. In super-scalar architecture, multiple execution units compete for these shared 
resources, potentially causing bottlenecks of calculating strength.

Although parallel programming and thread-level parallelism offer significant advantages, they also 
come with distinct challenges. Successfully addressing these challenges necessitates meticulous 
handling of synchronization, load balancing, and resource contention.
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Fig. 6 Tasks Distributed to Cores Sketch

4.3 Trade-offs on Designing  

In the context of super-scalar architecture, there are several trade-offs to consider. One of the key 
principles is Amdahl's law, which states that even if parallelized, some parts of the application are still 
continuous. Amdahl's law assumes that the speed-up ratio of parallelization is limited by the part of 
the program that cannot be parallelized (Wu et al., 2011). This means that no matter how many cores 
are added to the processor, some programs cannot take advantage of this parallelism, which limits 
the overall acceleration that can be achieved. 

On the other hand, Gustafson's Law highlights that as the size of a problem grows, the significance of 
the parallel aspect also increases to enhance scalability. According to this principle, with the 
availability of more computing resources, they are typically allocated to tackle larger problems. In this 
scenario, the time spent on the parallelizable segment is often considerably faster than the inherent 
serial tasks.

This means that designing better method and algorithm to realize functions and turn sequential 
computing into parallel computing will also help improve scalability. Interestingly, slower algorithms 
that can run in parallel sometimes work better on faster sequential algorithms on multi-core 
processors.

Finding the right balance is not easy. It's important to handle parallel tasks, synchronization, and 
communication overhead carefully. In super-scalar processors, problems like delays become more 
obvious and can affect performance. This can lead to scheduling issues. So, when creating super-
scalar architecture, it's crucial to think about these factors carefully.

 

5 Conclusion  
The evolution of multi-core processors and multi-processor PCs has revolutionized the hardware 
landscape, while advancements in operating systems have adapted to harness this increased 
processing power, illustrating the symbiotic relationship between hardware and software in the 
journey towards more efficient computing. 

The future of computing may be dominated by multi-core processors, with more and more emphasis 
on hardware and software level parallelism. There are undoubtedly still many challenges in this field, 
but we can still look forward to the future development of super-scalar architectures.
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